
A Revision of the Trapezoidal Branch-and-Bound

Algorithm for Linear Sum-of-Ratios Problems

TAKAHITO KUNO?

Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1

Tennoh-dai, Tsukuba, 305-8573 Ibaraki, Japan (e-mail: takahito@cs.tsukuba.ac.jp)

(Received: 9 December 2003; accepted: 28 July 2004)

Abstract. In this paper, we point out a theoretical flaw in Kuno [(2002) Journal of Global
Optimization 22, 155–174] which deals with the linear sum-of-ratios problem, and show that
the proposed branch-and-bound algorithm works correctly despite the flaw. We also note a

relationship between a single ratio and the overestimator used in the bounding operation, and
develop a procedure for tightening the upper bound on the optimal value. The procedure is
not expensive, but the revised algorithms incorporating it improve significantly in efficiency.

This is confirmed by numerical comparisons between the original and revised algorithms.

Key words: Branch-and-bound algorithm, Fractional programming, Global optimization,
Nonconvex optimization, Sum-of-ratios problem

1. Introduction

The sum-of-ratios problem is a class of fractional programming problems
and optimizes a sum of multiple ratios of functions over a convex set. Dur-
ing the past 20 years, the interest of researchers and practitioners has grad-
ually shifted to multi-ratios problems of this kind, from the single-ratio
problem on which adequate results have already been achieved for both
theories and algorithms [21]. Included among those is the problem of maxi-
mizing the minimum of ratios, which can be solved rather efficiently using
a local search algorithm similar to Newton’s method [5]. In contrast to
this, the sum-of-ratios problem has not yet been solved rigorously even
when the number of ratios is only 15, though various methods have been
tested for 20 years.
One of the reasons why the sum-of-ratios problem has attracted atten-

tion is that it has a broad range of applications. In light of applications
of the single-ratio problem, ratios may be representing profit/capital,
profit/cost, return/risk, and so on. The sum-of-ratios problem is the

? The author was partially supported by the Grand-in-Aid for Scientific Research (C)(2) 15560048

from the Japan Society for the Promotion of Science.

Journal of Global Optimization (2005) 33: 215–234 � Springer 2005
DOI 10.1007/s10898-004-1952-z

handiest approach for optimizing these simultaneously. Therefore, it can
easily be imagined that the range of applications is as wide as that of
the single-ratio problem. In fact, transportation problems [1], layered
manufacturing Problems [18, 23], portfolio problems [14], named only a
few, have been formulated into this problem. Another reason is that the
sum-of-ratios problem is challenging and intriguing, especially to
researchers. Even in the simplest case where the ratios are all linear,
their sum is neither quasiconvex nor quasiconcave, though each of them
has both properties. As a result, the problem has multiple local maxima,
many of which fail to be globally optimal. Since the difficulty of the
problem strongly depends on the number of ratios, some of the algo-
rithms proposed so far [8, 11, 15, 16, 19] assume it to be a few and
solve this multiextremal optimization problem by exploiting the low-rank
nonconcavity [13]. When the number of ratios is not limited, we have to
rely on branch-and-bound algorithms [3, 6, 12, 17] at this stage to solve
the problem within a practical amount of time. Among others, promising
are the algorithms by Kuno [17] and Benson [3], both of which use con-
cave envelopes of ratios on quadrangles to compute upper bounds on
the optimal value in the bounding process. In the case of convex func-
tions, it is rather easy to compute tight upper bounds on rectangles or
simplices generated by subdividing the feasible set in the branching pro-
cess. However, the sum of ratios is not convex, as mentioned above.
Then Kuno subdivided the projection of the feasible set on each denomi-
nator–numerator space into trapezoids and defined a concave envelope
over each of them using two affine functions. Benson showed that the
similar concave envelope can be defined on a rectangle, as in the usual
rectangular branch-and-bound algorithms [10]. Other than branch-and-
bound, an interesting approach is the image space analysis proposed by
Falk and Palocsay [7]. They associated a new variable with each ratio
and defined an ‘‘image space’’, in which optimization is easy along the
coordinate axes. In their recent paper [9], HoaiPhuong and Tuy elabo-
rated this approach using theory of monotonic optimization [24] and
solved a wider class of fractional programming problems. Readers are
referred to a recent survey [22] for more details of applications and algo-
rithms.
Kuno reported [17] that his trapezoidal branch-and-bound algorithm can

solve the problem with linear ratios even when the number of ratios
exceeds ten. However, there is a little theoretical flaw in [17]. In this paper,
we will correct it and show that his algorithm works correctly and gener-
ates globally optimal solutions even though it was designed based on an
incorrect observation. Moreover, we will develop an inexpensive procedure
for tightening the upper bound of the trapezoidal algorithm significantly.
The organization of the paper is as follows. In Section 2, we present an

216 T. KUNO

outline of the trapezoidal algorithm and show the flaw in [17]. We also re-
prove the correctness of the algorithm. In Section 3, we show that the
upper bound of the trapezoidal algorithm can be more tightened using a
characteristic of ratios, and then propose two revised branch-and-bound
algorithms. Section 4 is devoted to a report of computational comparison
between the revised algorithms and the original one. In Section 5, we give
some concluding remarks.

2. Linear Sum-of-Ratios Problem and the Trapezoidal Algorithm

The problem we consider in this paper is a linear sum-of-ratios problem:

maximize z ¼
Xp

i¼1

dixþ di
cixþ ci

subject to Ax ¼ b; xP0;

ð2:1Þ

where A 2 R
m�n, b 2 R

m, ci, di 2 R
n and ci; di 2 R for i ¼ 1; . . . ; p. We

denote the feasible set by

X ¼ fx 2 R
n j Ax ¼ b; xP0g;

and assume that X is bounded and has a nonempty relative interior. We
also assume throughout the paper that for any x 2 X,

cixþ ci > 0; dixþ diP0; i ¼ 1; . . . ; p: ð2:2Þ
Under this condition, each ratio ðdixþ diÞ=ðcixþ ciÞ is pseudomonotonic
on X (i.e., pseudoconcave and pseudoconvex; see [2] for detail). The sum
of pseudomonotonic functions is, however, neither pseudoconcave nor
pseudoconvex, even nor quasiconvex in general. Therefore, (2.1) can have
multiple locally optimal solutions, many of which fail to be globally opti-
mal; and besides, no vertex of polytope X might provide a globally optimal
solution for (2.1), unlike the usual global optimization problems of maxi-
mizing a convex function.
We first run over basic workings of the trapezoidal branch-and-bound

algorithm [17] for globally solving this multiextremal global optimization
problem (2.1).

2.1. OVERVIEW OF THE TRAPEZOIDAL ALGORITHM

For convenience, let us introduce two vectors n and g, each of p auxiliary
variables, and define

X ¼ fðn; gÞ 2 R
2p j n ¼ Cxþ c; g ¼ Dxþ d; x 2 Xg;

where

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 217

C ¼
c1

..

.

cp

2
64

3
75; c ¼

c1
..
.

cp

2
64

3
75; D ¼

d1

..

.

dp

2
64

3
75; d ¼

d1
..
.

dp

2
64

3
75:

From (2.2) and the compactness of X, we can select four appropriate num-
bers si, ti, ui and vi for each i ¼ 1; . . . ; p such that

0OsiOminfðdixþ diÞ=ðcixþ ciÞ j x 2 Xg
1 > tiPmaxfðdixþ diÞ=ðcixþ ciÞ j x 2 Xg
0 < uiOminfðci þ diÞx j x 2 Xg þ ci þ di

1 > viPmaxfðci þ diÞx j x 2 Xg þ ci þ di:

Using these numbers, let us define

Ci ¼ fðni; giÞ 2 R
2
þ j uiOni þ giOvig

Di ¼ fðni; giÞ 2 R
2
þ j siniOgiOtinig;

where R
�
þ denotes the nonnegative orthant of R�; and let

C ¼ C1 � � � � � Cp; D ¼ D1 � � � � � Dp:

Then (2.1) is reduced to an equivalent 2p-dimensional problem:

ðPÞ
maximize z ¼

Xp

i¼1
gi=ni

subject to ðn; gÞ 2 X \ C \ D:

The branch-and-bound algorithm proposed in [17] solves (P) recursively
while replacing Dk by

D0k ¼ fðnk; gkÞ 2 R
2
þ j sknkOgOwknkg

D00k ¼ fðnk; gkÞ 2 R
2
þ jwknkOgOtknkg

for some k and wk 2 ðsk; tkÞ. The key to efficiency of this kind of algo-
rithms is held by the bounding operation. In [17], it is carried out by solv-
ing a relaxed problem of (P).
The objective function of the relaxed problem is a sum of overestimators

for gi=ni’s, each of which is defined by two affine functions on the trape-
zoid Ci \ Di (see Figure 1). Let us denote the four vertices of Ci \ Di by

S ¼ ðui; siuiÞ=ðsi þ 1Þ; T ¼ ðvi; siviÞ=ðsi þ 1Þ
U ¼ ðvi; tiviÞ=ðti þ 1Þ; V ¼ ðui; tiuiÞ=ðti þ 1Þ:

One of the affine functions, say fi, is determined to agree with gi=ni at S, T
and V; and the other, say gi, passes it at T, U and V. Then we have

218 T. KUNO

fiðni; giÞ ¼ ðti þ 1Þðgi � siniÞ=ui þ si

giðni; giÞ ¼ ðsi þ 1Þðgi � tiniÞ=vi þ ti:
ð2:3Þ

The overestimator for gi=ni is given by the pointwise minimum of these as
follows:

/iðni; giÞ ¼ minf fiðni; giÞ; giðni; giÞg:

PROPOSITION 2.1. Function /i is concave, polyhedral and satisfies the
following for any ðni; giÞ 2 Ci:

/iðni; giÞPgi=ni if ðni; giÞ 2 Di; /iðni; giÞ < gi=ni otherwise:

For the proof of Proposition 2.1, see Lemma 3.1 in [17]. In [3], Benson
pointed out that /i is a concave envelope of gi=ni, i.e., a minimal concave
function overestimating the value of gi=ni, on Ci \ Di. Anyway, the sum of
concave functions is concave; and hence we have a concave maximization
problem, which gives an upper bound of (P):

ðPÞ
maximize z ¼

Xp

i¼1
/iðni; giÞ

subject to ðn; gÞ 2 X \ C \ D:

Let ðn, �gÞ be an optimal solution to (P) and let ¼
Pp

i¼1 /iðni; giÞ, which is
regarded as �1 when (P) is infeasible, If z is less than or equal to the
incumbent value of (2.1), we can discard D from further consideration in
the branch-and-bound algorithm.

Figure 1. Overestimator /i of gi=ni.

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 219

2.2. FLAW IN [17] AND ITS CORRECTION

In [17], it is asserted that (P) is equivalent to a linear programming problem:

maximize
Xp

i¼1
yi

subject to Ax ¼ b; xP0

ðti þ 1Þðsici � diÞxþ uiyiOai

ðsi þ 1Þðtici � diÞxþ viyiObi

siOyiOti

9
>>=

>>;
i ¼ 1; . . . ; p;

ð2:4Þ

where

ai ¼ ðti þ 1Þðdi � siciÞ þ siui; bi ¼ ðsi þ 1Þðdi � ticiÞ þ tivi:

Although (P) is certainly a linear programming problem, this assertion is
incorrect as is shown by a simple example below,

EXAMPLE 2.1. Consider a three-dimensional problem:

maximize
x2 þ 1

x1 þ 1
þ x1 þ 1

x2 þ 1

subject to x1 þ x2 þ x3 ¼ 1; xP0:

ð2:5Þ

Problem (P) associated with (2.5) is of the form:

maximize g1=n1 þ g2=n2
subject to ðn; gÞ 2 X; n; gP0

2On1 þ g1O4; 2On2 þ g2O4

ð1=3Þn1Og1O3n1; ð1=3Þn2Og2O3n2;

ð2:6Þ

where

X ¼ ðn; gÞ 2 R
4 n1 ¼ x1 þ 1; g1 ¼ x2 þ 1; x1 þ x2 þ x3 ¼ 1

n2 ¼ x2 þ 1; g2 ¼ x1 þ 1; xP0

�����

)
:

(

If we apply the trapezoidal algorithm with bisection of ratio 1=2 (the
details will be shown later), it solves the following subproblem of (2.6)
after seven iterations:

maximize g1=n1 þ g2=n1
subject to ðn; gÞ 2 X; n; gP0

2On1 þ g1O4; 2On2 þ g2O4

ð1=3Þn1Og1Oð2=3Þn1; n2Og2Oð4=3Þn2:

ð2:7Þ

220 T. KUNO

The relaxed problem of (2.7) is

maximize min
� ð5=18Þn1 þ ð5=6Þg1 þ 1=3

� ð2=9Þn1 þ ð1=3Þg1 þ 2=3

()

þmin
� ð7=6Þn2 þ ð7=6Þg2 þ 1

� ð2=3Þn2 þ ð1=2Þg2 þ 4=3

()

subject to ðn; gÞ 2 X; n; gP0

2On1 þ g1O4; 2On2 þ g2O4

ð1=3Þn1Og1Oð2=3Þn1; n2Og2Oð4=3Þn2:

ð2:8Þ

Since n1 ¼ g2 and n2 ¼ g1 in this particular example, the last two con-
straints in both (2.7) and (2.8) are inconsistent. However, if we transform
(2.8) into the form (2.4), we have

maximize y1 þ y2

subject to x1 þ x2 þ x3 ¼ 1; xP0

ð5=9Þx1 � ð5=3Þx2 þ 2y1O16=9

ð8=9Þx1 � ð4=3Þx2 þ 4y1O28=9

� ð7=3Þx1 þ ð7=3Þx2 þ 2y2O2

� 2x1 þ ð8=3Þx2 þ 4y2O14=3

1=3Oy1O2=3; 1Oy2O4=3;

which is feasible and has an optimal solution x ¼ ð1=3; 0; 2=3Þ and
y ¼ ð2=3; 4=3Þ.
To obtain a linear programming problem actually equivalent to (P), we

have to replace the constraint siOyiOti for each i in (2.4) by

siðcixþ ciÞOdixþ diOtiðcixþ ciÞ: ð2:9Þ
Then we have

maximize
Xp

i¼1
yi

subject to Ax ¼ b; xP0

ðti þ 1Þðsici � diÞxþ uiyiOai

ðsi þ 1Þðtici � diÞxþ viyiObi

ðsici � diÞxOdi � sici

ðdi � tic
iÞxOtici � di

9
>>>>>>=

>>>>>>;

i ¼ 1; . . . ; p:

ð2:10Þ

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 221

The equivalence relation between (2.10) and (P) follows immediately from
the observation that the latter can be rewritten as

maximize z ¼
Xp

i¼1
yi

subject to ðn; gÞ 2 X \ C \ D:

yiOfiðni; giÞ; yiOgiðni; giÞ; i ¼ 1; . . . ; p:

PROPOSITION 2.2. Problem ð2:10Þ is equivalent to (P) in the sense that if
ð2:10Þ is infeasible, then �z ¼ �1; otherwise, for any optimal solution ðx; yÞ
to ð2:10Þ we have

n ¼ Cxþ c; g ¼ Dxþ d; z ¼
Xp

i¼1
yi:

2.3. RECONSIDERATION OF THE TRAPEZOIDAL ALGORITHM

Problem (2.4) has turned out not to be equivalent to (P). Then, does the
algorithm in [17] which solves (2.4) repeatedly, instead of (2.10), yield
incorrect solutions or fail to converge ? – The answer is NO. We should
notice that (2.4) is a relaxation of (P), and hence provides an upper bound
for (P).

PROPOSITION 2.3. If (2.4) is infeasible, then ¼ �1; otherwise, for any opti-
mal solution ðex;eyÞ to (2.4) we have

zO
Xp

i¼1
eyi:

Proof. Since any optimal solution ðn; gÞ to (P) is a point of X, there is
some x 2 X satisfying n ¼ Cxþ c and g ¼ Dxþ d. Also, for each i, we have
either of the following:

/iðni; giÞ ¼ fiðni; giÞOgiðni; giÞ; /iðni; giÞ ¼ giðni; giÞ < fiðni; giÞ:
However, (2.3) implies

giðni; giÞ ¼ ðsi þ 1Þðgi � tiniÞ=vi þ tiOti;

because ðni; giÞ 2 Di and hence giOtini. In both cases, /iðni; giÞOti holds.
Moreover, Proposition 2.1 implies that /iðni; giÞPgi=niPsi. Therefore, let-
ting yi ¼ /iðni; giÞ, then we have a feasible solution ðx; yÞ to (2.4) of value
z ¼

Pp
i¼1 yi. (

Let us denote by ez the optimal value of (2.4) and regard it as �1 when
(2.4) is infeasible. As shown by Proposition 2.3, we have ezPz; and besides
we know that z is an upper bound on the optimal value of (P). Therefore,

222 T. KUNO

if ez is less than or equal to the incumbent value of (2.1), we can discard D
from further consideration. The incumbent can be updated to ex if neces-
sary, because ex is a feasible solution to the target problem (2.1). The algo-
rithm works without any trouble as long as we use an exhaustive
subdivision rule (see e.g. [10]) such as bisection to divide D ¼ D1 � � � � � Dp.
This rule selects Dk ¼ fðnk; gkÞ 2 R

2
þ j sknkOgkOtknkg with the longest

½sk; tk� and sets wk ¼ ð1� kÞsk þ ktk for any fixed ratio k 2 ð0; 1Þ.
As for the x-division rule, the algorithm seems to fail because an opti-

mal optimal solution ðex;eyÞ to (2.4) might not satisfy (2.9) for some i. The
x-division rule selects Dk such that

k 2 argmaxf/iðeni;egiÞ � egi=eni j i ¼ 1; . . . ; pg;

and sets wk ¼ egk=enk, where eni ¼ ciexþ ci and egi ¼ diexþ di for each i. Hence,
if (2.9) is not satisfied for all i, then wk deviates from the interval ½sk; tk�
and D cannot be divided. In that case, however, D contains no feasible
solution better than ðen;egÞ and can be discarded from further consideration.

PROPOSITION 2.4. Assume that ð2.4Þhas an optimal solution ðex;eyÞ and let
en ¼ Cexþ c and eg ¼ Dexþ d. If ðen;egÞ satisfies

egi=eni 62 ðsi; tiÞ; i ¼ 1; . . . ; p; ð2:11Þ
then D contains no feasible solution to ðPÞ better than ðen;egÞ.

Proof. We first remark that egi=eniPsi for each i. Otherwise, we have

eyiOðti þ 1Þðegi � sieniÞ=ui þ si < si;

which is inconsistent with the constraint yiPsi in (2.4). Therefore, (2.11)
implies

egi=eni > ti; i ¼ 1; . . . ; p:

We then have fiðeni;egiÞ > ti immediately, and

giðeni;egiÞ ¼ ðtiegi þ egi � sitieni � sieniÞ=ui þ si

> ðti � siÞðeni þ egiÞ=ui þ tiPti

by noting eni þ egiPui. We see from these that eyi ¼ ti holds for each i. On
the other hand, from Proposition 2.1, we have /iðeni; egiÞ < egi=eni because
ðeni;egiÞ 62 Di. Consequently, we have

Xp

i¼1
gi=niOez ¼

Xp

i¼1
ti <

Xp

i¼1
egi=eni

for any feasible solution ðn; gÞ to (P). (

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 223

As observed above, the trapezoidal algorithm works correctly on (2.1) in
spite of the theoretical flaw in [17]. Furthermore, solving (2.4) has the
advantage over (2.10) in some respect. Each successor of (P), say (P0)
obtained by dividing Dk, is different from (P) only in either sk or tk. To
solve the relaxed problem of (P0), starting from an optimal solution to the
relaxed problem of (P), we usually restore its feasibility and then reestab-
lish the optimality, using sensitivity analysis of the simplex algorithm (see
e.g. [4]). This process can be done more efficiently on (2.4) because two of
the four constraints involving sk or tk are just bounding constraints on yk
in (2.4). However, it is also a fact that the upper bound ez given by (2.4) is
inferior to z. It will cause relatively rapid growth of branching trees. In the
next section, we will discuss a procedure for tightening the upper bound ez.

3. Tightening of the Upper Bound and its Applications

Let us suppose that the relaxed problem (2.4) has an optimal solution
ðex;eyÞ, and let en ¼ Cexþ c and eg ¼ Dexþ d. If egi=eni 62 ðsi; tiÞ for each i, we
need not tighten the upper bound ez ¼

Pp
i¼1 eyi any more, as seen in Propo-

sition 2.4. Therefore, we assume for some j 2 f1; . . . ; pg that

sj < egj=enj < tj:

Then we can easily check

sj < fjðenj;egjÞ; sj < gjðenj;egjÞ < tj;

and see that the value of eyj depends on neither sj nor tj directly, but on

/jðenj;egjÞ. Let us try improving this upper bound /jðenj;egj Þ on egj=enj by
noting that the value of nj=gj is constant along the half line defined by
gj ¼ ðegj=enjÞnj (see Figure 2).

Figure 2. Tightening the upper bound.

224 T. KUNO

Let us denote the intersection points of gj ¼ ðegj=enjÞnj with nj þ gj ¼ uj
and nj þ gj ¼ vj respectively by

X ¼ ðujenj; ujegjÞ=ðenj þ egjÞ; Y ¼ ðvjenj; vjegjÞ=ðenj þ egjÞ:

Both the values of gj=nj at X and Y are egj=enj. Also, the values of /j at X
and Y, given by fj and gj respectively, coincide as follows:

/jðXÞ ¼ fjðXÞ ¼ ½ðsj þ tj þ 1Þegj � sjtjenj�=ðenj þ egjÞ ¼ gjðYÞ ¼ /jðYÞ:

Since /j is concave and overestimates gj=nj on Cj \ Dj (Proposition 2.1), we
have

/jðenj;egjÞP/jðXÞ ¼ /jðYÞPegj=enj:

If we replace eyj ¼ /jðenj;egjÞ by eyj ¼ /jðXÞ, the upper bound ez ¼
Pp

j¼1 eyj
improves and will suppress the rapid growth of branching trees.
Let

wiðni; giÞ ¼ ½ðsi þ ti þ 1Þgi � sitini�=ðni þ giÞ; i ¼ 1; . . . ; p:

In general, the following relationship holds among /i, wi and gi=ni:

PROPOSITION 3.1. For any ðni; giÞ 2 Ci we have

/iðni; giÞPwiðni; giÞPgi=ni if ðni; giÞ 2 Di

/iðni; giÞ < wiðni; giÞ < gi=ni otherwise.
ð3:1Þ

Especially when ðni; giÞ is an interior point of Ci \ Di, the first two inequali-
ties hold strictly.

Proof. Let ðn0i; g0iÞ be a point in Ci. We have already shown that the first
two inequalities hold when ðn0i; g0iÞ lies on the interior of Di. If it is a bound-
ary point of Di, both the values of /i and wi are si or ti. Now, suppose
ðn0i; g0iÞ is an interior point of Ci \ Di and show that the inequalities hold
strictly. There are two cases to consider:

fiðn0i; g0iÞOgiðn0i; g0iÞ ð3:2Þ
fiðn0i; g0iÞ > giðn0i; g0iÞ: ð3:3Þ

In case (3.2), we have /iðn0i; g0iÞ ¼ fiðn0i; g0iÞ and
fiðn0i; g0iÞ � wiðn0i; g0iÞ ¼ ðti þ 1Þðg0i � sin

0
iÞðn0i þ g0i � uÞ=½uiðn0i þ g0iÞ� > 0

because sin
0
i < g0i and ui < n0i þ g0i. Also we have

wiðn0i; g0iÞ ¼ ðg0i � sin
0
iÞðtin0i � g0iÞ=½n0iðn0i þ g0iÞ� > 0

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 225

because sin
0
i < g0i < tin

0
i. In case (3.3), we may replace /iðn0i; g0iÞ ¼ fiðn0i; g0iÞ

by giðn0i; g0iÞ. The last two inequalities in (3.1) can be proved in the same
way. (

3.1. REVISED TRAPEZOIDAL ALGORITHM

Let us revise the trapezoidal branch-and-bound algorithm using the proce-
dure wi for tightening the upper bound ez. We denote by �P0 a given toler-
ance for the optimal value of the target problem (2.1).

algorithm TRAPEZOID

begin

for i ¼ 1; . . . ; p do begin

compute si, ti, ui and vi;
Ci :¼ fðni; giÞ 2 R

2
þjuiOni þ giOvig;

Di :¼ fðni; giÞ 2 R
2
þjsini OgiOtinig;

end;

C :¼ C1 � � � � � Cp; D :¼ D1 � � � � � Dp; D :¼ fDg; z� :¼ 0;
while D 6¼ do begin

select D 2 D and set D :¼ D n fDg; define a subproblem (P) with D;
for i ¼ 1; . . . ; p do

determine the overestimator /i of gi=ni on Ci \ Di;
construct the linear programming problem (2.4) using /i

0s;
solve (2.4) to obtain an upper bound ez on the value of (P);
if ez� z� > � then begin
set ~n ¼ C~xþ c and ~g ¼ D~xþ d for an optimal solution ðex;eyÞ to
ð2:4Þ;
if
Pp

i¼1 egi=eni > z� then
update z� :¼

Pp
i¼1 egi=eni and x� :¼ ~x;

for i ¼ 1; . . . ; p do

if si < egi=eni < ti then ~yi :¼ wið~ni; ~giÞ;
tighten the upper bound to ~z :¼

Pp
i¼1 eyi;

if ~z� z� > � then
select k 2 f1; . . . ; pg and wk 2 ½sk; tk�;
D0k :¼ fðnk; gkÞ 2 R

2
þjsknkOgkOwknkg;

D00k :¼ fðnk; gkÞ 2 R
2
þjwknkOgk Otknkg;

D0 :¼ D1 � � � � � D0k � � � � � Dp;
D00 :¼ D1 � � � � � D00k � � � � � Dp; D :¼ D [fD0;D00g

end

end

end

end;

Although the rule for selecting D 2 D is not specified in this descrip-
tion, we can use any one of the usual selection rules in branch-and-bound

226 T. KUNO

algorithms (see e.g. [10]). Typical ones are the depth-first rule, where D is
taken from the head of the list D and fD0;D00g is put back there, and the
best-bound rule, where D with largest ez is taken out of D. In general, the
depth-first rule requires less memory than the best-bound rule, but does
not guarantee convergence of branch-and-bound algorithms unless the
tolerance � > 0. To select k 2 f1; . . . ; pg and wk 2 ½sk; tk�, we can adopt
either bisection or x-division, as in the original algorithm shown in the
previous section. Essentially, algorithm TRAPEZOID has the same struc-
ture as the original, except for the tightened upper bound, and hence
behaves similarly as follows (see Theorem 5.1 and Corollary 5.2 in [17]
for the proofs):

THEOREM 3.2. When � > 0, algorithm TRAPEZOID terminates after a
finite number of iterations and yields a globally �-optimal solution x� to prob-
lem (2.1).

COROLLARY 3.3. Suppose � ¼ 0. If the best-bound rule is adopted in select-
ing D 2 D, the sequence of x�’s generated by algorithm TRAPEZOID has
limit points, each of which is a globally optimal solution to problem ð2:1Þ.

3.2. SIMPLIFICATION OF THE ALGORITHM

The procedure wi is based on a simple observation but highly effective in
suppressing the growth of branching trees, as will be indicated by numeri-
cal results in Section 4. Those suggest an expectation that the algorithm
might still work well by means of wi even if we further relax the problem
(2.4). Here, instead of (2.4), we propose to solve the following problem in
the bounding operation:

maximize
Xp

i¼1
yi

subject to Ax ¼ b; xP0

ðsi þ 1Þðtici � diÞxþ viyiObi

siOyiOti

)
i ¼ 1; . . . ; p:

ð3:4Þ

This is associated with a simplification of (P):

ðP0Þ
maximize z ¼

Xp

i¼1
giðni; giÞ

subject to ðn; gÞ 2 X \ C0 \ D;

where

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 227

C0i ¼ fðni; giÞ 2 R
2
þjni þ giOvig; C0 ¼ C01 � � � � � C0p:

The reason why we drop fi from each overestimator /i ¼ minffi; gig is that
fi is supposed to be less active than gi in the maximization problem. Since
p constraints are removed, (3.4) is easier to solve than (2.4), though the
upper bound loosens. The following is an immediate result from the inclu-
sion relation between the feasible sets of (2.4) and (3.4).

PROPOSITION 3.4. If (3.4) is infeasible, then z ¼ �1; otherwise, for any
optimal solution ðex0;ey0Þ to (3.4) we have

zO ezO
Xp

i¼1
ey0i:

Suppose that (3.4) is feasible. Let ez 0 ¼
Pp

i¼1 ey 0i , en
0 ¼ Cex 0 þ c and

eg 0 ¼ Dey 0 þ d for an optimal solution ðex 0;ey 0Þ to (3.4). Even this loose upper
bound ez0 can be tightened if we replace ~y 0j by wjðen 0j ;eg 0j Þ for each j such that
sj < eg 0j =en

0
j < tj (see Figure 3). Since ðen 0j ;eg 0j Þ 2 Dj, by Proposition 3.1 we have

ey 0j ¼ gjðen 0j ;eg 0j ÞP/jðen 0j ;eg 0j ÞPwjðen 0j ;eg 0j ÞPeg 0j =en
0
j ;

where the last two inequalities hold strictly if ðen 0j ;eg 0j Þ is an interior point of
C 0j \ Dj. If we use (3.4) in place of (2.4), we can omit computing u

0
i s in

algorithm TRAPEZOID. Since they usually need solving p linear program-
ming problems, preprocessing time will be reduced considerably by this
simplification. Some other effectiveness will be shown in the next section.

4. Numerical Experiment

Let us report computational results of having compared algorithm
TRAPEZOID and its simplification with the original algorithm in [17].

Figure 3. Simplified overestimator.

228 T. KUNO

Those algorithms were tested on problems of varied sizes, each of which
was of the following form and generated randomly in the same way as [17]:

maximize z ¼
Xp

i¼1

Pn 0

j¼1 dijxj þ c
Pn 0

j¼1 cijxj þ c

subject to
Xn 0

j¼1
akjxjO1:0; k ¼ 1; . . . ;m

xjP0:0; j ¼ 1; . . . ; n 0;

ð4:1Þ

where cij; dij 2 ½0:0; 0:5� and akj 2 ½0:0; 1:0� are uniformly random numbers.
The constant terms of denominators and numerators were all set to the
same number c, which ranged between 2:0 and 80:0.
The algorithms were coded using GNU Octave (version 2.0.17) [20], a

Matlab-like computational tool, according to the descriptions in the previ-
ous section and [17]. The tolerance � needed in the backtracking criterion
of each algorithm was fixed at 10�5. As to the initial values of si and ti, we
exploited the structure of (4.1) and determined them, together with ui and
vi, by solving a single linear programming problem for each i. First, ui was
set to 2c because both

Pn 0

j¼1 cijxj þ c and
Pn 0

j¼1 dij þ c have the same mini-
mum value c in (4.1). Then, a linear programming problem was solved to
determine the maximum value vi of

Pn 0

j¼1ðcij þ dijÞxj þ 2c. Finely, si and ti
were set to c=ðvi � cÞ and ðvi � cÞ=c, respectively. This method is easy to
implement and makes no difference in the preprocessing time of three algo-
rithms, though the resulting D is somewhat loose to wrap up X. As the rule
for selecting D 2 D, depth first was adopted, and both bisection and x-de-
vision rules were tried to divide D into D 0 and D 0 0, in each algorithm.
Therefore, a total of six codes were written and run on a computer (Pen-
tium M, 900 MHz) with Linux 2.4.20.

4.1. EFFECT OF CHANGES IN p AND c

It has been reported in [17] that the performance of the trapezoidal
branch-and-bound algorithm is strongly affected by changes in p and c. In
order to check how much it improves with the procedure wi, we solved
(4.16) of size ðm; n 0Þ ¼ ð60; 40Þ as changing p 2 f2; 4; . . . ; 10; 11; . . . ; 15g
and c 2 f2:0; 4:0; . . . ; 10:0; 20:0; 40:0; 60:0; 80:0g.
Figure 4 shows variation in the average CPU seconds taken to solve ten

instances with c fixed at 10:0 for each p using bisection. The results of
algorithm TRAPEZOID (trap) and its simplified version (simp) are repre-
sented by the solid and broken lines, respectively; and the dotted line indi-
cates the result of the original algorithm (orig). Figure 5 shows the average
CPU seconds taken to solve the same instances using x-division.

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 229

Whichever division rule it uses, the computational time of each algorithm
increases as an exponential function in p. However, we should notice that
algorithm TRAPEZOID requires far less CPU time than the original for
every p. Even the simplified version takes less CPU time than the original
for each p when using bisection, and for pO6 when using x-division.
Figures 6 and 7, respectively, show variation in the average CPU seconds

taken to solve ten instances with p fixed at 6 for each value of c, using bisec-
tion and x-division. Since the overestimator /i is rather poor in estimating
gi=ni near the origin of the ni-gi space [17], the computational time of the ori-
ginal algorithm increases explosively if the value of c decreases below around
ten. We can see from these line plots that this weakness is overcome consider-
ably with the procedure wi. Especially when using x-division, even the sim-
plified algorithm requires fairly less CPU time than the original for cO20:0,
despite the removal of fi from the overestimator /i.

0.1

1

10

100

2 4 6 8 10 12 14

C
PU

 s
ec

on
ds

 (
in

 lo
g-

sc
al

e)

ratios (p)

200

15

trap
simp
orig

Figure 4. Behavior of algorithms using bisection when ðm; n0Þ ¼ ð60; 40Þ and c ¼ 10:0:

0.1

1

10

100

2 4 6 8 10 12 14

C
PU

 s
ec

on
ds

 (
in

 lo
g-

sc
al

e)

ratios (p)

200

15

trap
simp
orig

Figure 5. Behavior of algorithms using x-division when ðm; n0Þ ¼ ð60; 40Þ and c ¼ 10:0:

230 T. KUNO

4.2. EFFECT OF CHANGES IN ðm; n 0Þ

We next compare three algorithms on (4.1) of size ðm; n 0Þ larger than
ð60; 40Þ. Except for the above observation, we can study from Figures 4 and
5 that the x-division rule is more efficient than bisection when p is a small
number, say less than eight. Also, we have seen that it is demanding for the
original algorithm to solve instances with c < 10:0. Therefore, we employed
the x-division rule in each algorithm and solved ten instances with c ¼ 10:0
for each ðm; n 0Þ 2 fð40; 60Þ; ð80; 60Þ; ð60; 80Þ; ð100; 80Þ; ð80; 100Þ; ð120; 100Þg,
as changing p 2 f4; 5; 6; 7g.
Table 1 shows the computational result, which contains the average CPU

seconds (sec) and the average number of branching operations (#) needed
by algorithm TRAPEZOID (trap), the simplified version (simp) and the ori-
ginal algorithm (orig) for each ðm; n 0Þ and p. Both figures of each algorithm
increase mildly with increase in the size of ðm; n 0Þ, in contrast to their rapid
change depending on p. As expected, the performance of algorithm

0.1

1

10

100

0 20 40 60 80

C
PU

 s
ec

on
ds

 (
in

 lo
g-

sc
al

e)

ratios (p)

trap
simp
orig

200

Figure 6. Behavior of algorithms using bisection when ðm; n0Þ ¼ ð60; 40Þ and p ¼ 6:

0.1

1

10

100

0 20 40 60 80

C
PU

 s
ec

on
ds

 (
in

 lo
g-

sc
al

e)

ratios (p)

200 trap
simp
orig

Figure 7. Behavior of algorithms using x-division when ðm; n0Þ ¼ ð60; 40Þ and p ¼ 6:

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 231

T
a
b
le

1
.
C
o
m
p
u
ta
ti
o
n
a
l
re
su
lt
s
o
f
th
re
e
a
lg
o
ri
th
m
s
w
h
en

c
=

1
0
.0

m
·
n
¢

p
=

4
p
=

5
p
=

6
p
=

7

tr
a
p

si
m
p

o
ri
g

tr
a
p

si
m
p

o
ri
g

tr
a
p

si
m
p

o
ri
g

tr
a
p

si
m
p

o
ri
g

4
0

·
6
0

se
c

0
.7
4
1

0
.6
0
9

1
.1
8
0

1
.5
1
7

1
.3
6
6

3
.0
0
6

3
.1
6
2

3
.5
2
4

9
.6
5
4

7
.9
4
9

9
.7
7
0

1
9
.1
3

#
7
0
.4

7
8
.4

1
3
9
.8

1
5
4
.4

1
9
9
.8

3
5
8
.8

3
5
4
.6

5
7
0
.2

1
,1
1
5

9
0
6
.6

1
,7
6
3

2
,3
2
7

8
0

·
6
0

se
c

1
.2
5
6

0
.9
4
4

1
.9
0
7

2
.3
5
7

1
.8
8
7

4
.8
0
5

3
.6
1
9

3
.7
6
7

7
.4
6
2

7
.3
3
8

9
.9
8
9

1
6
.0
3

#
8
1
.4

7
7
.6

1
6
3
.2

1
9
6
.0

2
2
1
.0

4
5
4
.4

3
5
5
.2

5
1
1
.4

7
9
7
.0

7
3
9
.0

1
,6
0
4

1
,6
5
7

6
0

·
8
0

se
c

1
.4
8
5

1
.2
0
3

2
.6
9
7

2
.7
3
2

2
.0
3
6

5
.7
6
4

5
.4
1
2

5
.1
7
3

1
5
.3
4

1
1
.1
4

2
4
.0
7

3
7
.4
0

#
8
5
.6

9
8
.0

1
9
4
.4

1
9
8
.0

1
9
3
.0

4
7
4
.0

4
6
3
.2

6
8
0
.6

1
,3
5
3

9
2
5
.0

2
,9
9
3

3
,1
1
2

1
0
0

·
8
0

se
c

2
.1
7
2

1
.9
6
9

3
.6
8
1

3
.9
8
3

3
.8
9
9

1
3
.8
6

6
.8
6
1

9
.3
7
6

1
5
.5
7

1
3
.4
6

2
0
.8
5

4
6
.0
7

#
7
2
.2

8
3
.8

2
0
0
.0

1
7
9
.2

2
2
9
.8

8
9
4
.0

3
5
7
.2

7
0
5
.0

1
,0
5
5

8
6
4
.6

1
,9
9
6

2
,8
9
7

8
0

·
1
0
0

se
c

2
.3
3
8

2
.0
6
8

4
.0
9
4

4
.0
4
9

3
.9
2
6

8
.0
7
7

8
.4
6
8

1
0
.5
4

2
5
.7
8

1
5
.0
2

3
0
.1
7

4
5
.8
8

#
8
6
.0

8
9
.0

2
1
6
.4

1
9
4
.4

2
5
7
.2

4
9
4
.0

4
4
1
.2

8
0
7
.2

1
,5
1
2

7
9
9
.0

2
,3
9
7

2
,5
3
6

1
2
0

·
1
0
0

se
c

3
.2
2
1

2
.8
6
6

4
.7
2
2

4
.9
1
8

4
.6
8
9

8
.6
7
1

1
0
.3
0

1
4
.1
0

3
0
.8
5

2
2
.5
1

3
5
.1
6

7
8
.1
7

#
8
6
.6

8
1
.4

1
8
8
.8

1
6
2
.4

2
3
0
.6

4
1
4
.6

4
3
3
.4

8
9
1
.8

1
,3
8
3

9
7
6
.8

2
,3
7
6

3
,7
3
1

232 T. KUNO

TRAPEZOID is superior to that of the original for every ðm; n 0Þ and p. It
should be noted that the simplified version takes less CPU time than algo-
rithm TRAPEZOID for each ðm; n 0Þ when p is less than six. Since the for-
mer almost always requires more branching operations than the latter, this
is due to the ease of solving the relaxed problem (3.4) compared with (2.4).
Unfortunately, the performance of the original algorithm impeded further
comparisons on instances of larger ðm; n 0; pÞ. Algorithm TRAPEZOID,
however, could solve them rather efficiently unless p exceeds ten.

5. Concluding Remarks

In this paper, we pointed out a theoretical flaw in our previous paper [17].
The linear program (2.4) has been asserted in [17] to be equivalent to the
relaxed problem (P) of the linear sum-of-ratios problem (P). Actually, it is
not equivalent to but is a relaxed problem of (P). The trapezoidal branch-
and-bound algorithm proposed in [17] solves this incorrect (2.4) repeatedly.
Nevertheless, it converges to a correct globally optimal solution to (P), as
we proved in Section 2. To tighten the upper bound yielded as the optimal
value of (2.4), we proposed the procedure wi, which exploits a relationship
between gi=ni and its overestimator /i. This is a simple procedure but sig-
nificantly effective in suppressing the growth of branching trees, as shown
in the previous session. We also showed that wi enables us to further relax
(2.4) without damaging the performance of the algorithm not so much.
The procedure wi is not only applicable to (2.4), but can also be used for

the original relaxed problem (P). In that case, since we can expect a still
tighter upper bound, the number of branching operations would be further
decreased. Also, we could design a procedure similar to wi for improving
the overestimator of gi=ni proposed by Benson [3]. His overestimator is
defined on rectangles but using two affine functions like ours. Details of
these matters will be reported elsewhere.

Acknowledgment

The author is grateful to Professors L.D. Muu, J. Shi and two anonymous
reviewers for their valuable comments, which have greatly improved the
earlier version of this paper.

References

1. Almogy, Y. and Levin, O. (1970), Parametric analysis of a multi-stage stochastic shipping

problem. In: Lawrence, J. (ed.), Operational Research ’69, Tavistock Publications,
London, 359–370.

TRAPEZOIDAL ALGORITHM FOR LINEAR SUM-OF RATIOS PROBLEMS 233

2. Avriel, M., Diewert, W.E., Schaible, S. and Zang, I. (1988), Generalized Convexity, Ple-

num Press, New York.
3. Benson, H.P. (2002), Using concave envelopes to globally solve the nonlinear sum of

ratios problem, Journal of Global Optimization 22, 343–364.

4. Chvátal, V. (1983), Linear Programming, Freeman, New York.
5. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1985), An algorithm for generalized frac-

tional programs, Journal of Optimization Theory and Applications 47, 35–49.

6. Dür, R. Horst and Thoai, N.V. Solving sum-of-ratios fractional programs using efficient
points, Optimization 49, 447–466.

7. Falk, J.E. and Palocsay, S.W. (1994), Image space analysis of generalized fractional

programs, Journal of Global Optimization 4, 63–88.
8. Freund, R.W. and Jarre, F. (2001), Solving the sum-of-ratios problem by an interior-point

method, Journal of Global Optimization 19, 83–102.
9. HoaiPhuong, N.T. and Tuy, H. (2003), A unified monotonic approach to generalized

linear fractional programming, Journal of Global Optimization 26, 229–259.
10. Horst, R. and Tuy, H. (1993), Global Optimization: Deterministic Approaches, 2nd ed.,

Springer-Verlag Berlin.

11. Konno, H. and Abe, N. (1999), Minimization of the sum of three linear fractional
functions, Journal of Global Optimization 15, 419–432.

12. Konno, H. and Fukaishi, K. A branch-and-bound algorithm for solving low rank linear

multiplicative and fractional programming problems.
13. Konno, H., Thach, P.T. and Tuy, H. (1997), Optimization on Low Rank Nonconvex

Structures, Kluwer Academic Publishers Dordrecht.
14. Konno, H. and Watanabe, H. (1996), Bond portfolio optimization problems and their

applications to index tracking, Journal of the Operations Research Society of Japan 39,
295–306.

15. Konno, H., Yajima, Y. and Matsui, T. (1991), Parametric simplex algorithms for

solving a special class of nonconvex minimization problems, Journal of Global Opti-
mization 1, 65–81.

16. Konno, H. and Yamashita, H. (1999), Minimization of the sum and the product of several

linear fractional functions, Naval Research Logistics 46, 583–596.
17. Kuno, T. (2002), A branch-and-bound algorithms for maximizing the sum of several

linear fractional functions, Journal of Global Optimization 22, 155–174.

18. Majihi, J., Janardan, R., Smid, M. and Gupta, P. (1999), On some geometric optimization
problems in layered manufacturing, Computational Geometry 12, 219–239.

19. Muu, L.D., Tam, B.T. and Schaible, S. (1995), Efficient algorithms for solving certain
nonconvex programs dealing with the product of two affine fractional functions, Journal

of Global Optimization 6, 179–191.
20. Octave Home Page, http://www.octave.org/.
21. Schaible, S. (1995), Fractional programming. In: Horst, R. and Pardalos, P.M. (eds.),

Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht pp. 495–608.
22. Schaible, S. and Shi, J. (2003), Fractional programming: the sum-of-ratios case, Optimi-

zation Methods and Software 18, 219–229.

23. Schwerdt, J., Smid, M., Janardan, R., Johnson, E. and Majihi, J. Protecting critical facets
in layered manufacturing, Computational Geometry 16, 187–210.

24. Tuy, H. (2000), Monotonic optimization: problems and solution approaches, SIAM

Journal of Optimization 11, 464–494.

234 T. KUNO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

